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We describe a type of dissipative structure, namely, triadic Hopf-static patterns, which are in fact drifting
spots in a rhombic or rhomboidal arrangement. They are generated by a resonant interaction between simul-
taneously unstable Hopf and static modes. We analyze triadic Hopf-static patterns in a nonlinear optical system
consisting of a thin layer of two-level material and a feedback mirror with explicit inclusion of delay effects.
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PACS number~s!: 05.70.Fh, 42.65.Sf, 47.54.1r

Spontaneous pattern formation in systems driven out of
equilibrium becomes especially intricate when Hopf and
static instabilities develop simultaneously. Such situations
have been studied both theoretically and experimentally in
chemical systems@1–3# as well as in hydrodynamics@4–6#.
It was shown that a simultaneous excitation of Hopf and
static modes can give rise to a coexistence of traveling and
steady rolls~stripes! @5,2#. Another result was that spatially
subharmonic oscillations generated by resonance interaction
between the Hopf and static modes in one-dimensional~1D!
systems might be accompanied by a spatiotemporal chaos
@6,7#.

In comparison with the 1D case, 2D geometry implies a
richer variety of structures and a larger number of possible
resonant combinations in the mode interaction. For example,
in the case of an absence of the static instability, an interac-
tion of Hopf modes results in a whole family of patterns
including traveling and standing rolls, squares and rhombi,
as demonstrated in a general treatment@8#.

In this Rapid Communication, on a basis of concrete op-
tical pattern-forming scheme, we report on stable 2D pat-
terns, namely, drifting rhombic and rhomboidal structures
produced by resonant interaction of the Hopf and static
modes. Finding parallels with the resonant-triad nonlinear
interaction in hydrodynamical boundary-layer transitions@9#,
we call the structures triadic Hopf-static patterns. The emer-
gence of such a kind of pattern is natural for optics because
of diffraction of light during its propagation with a finite
velocity. Delay effects give rise to Hopf instabilities in lasers
@10#, passive ring cavities@11#, and half cavities@12#; dif-
fractional coupling is responsible for the formation of static
patterns in many optical schemes, where delay effects are
negligible @13#.

Here we consider a single feedback mirror scheme, which
in different modifications became very popular in studies of
optical pattern formation@12,14–18# because of its relative
simplicity. As shown in Fig. 1~a!, a plane-wave light field
with amplitudee0 is incident on a thin layer of nonlinear
material. After transmission through the layer, light is fed
back by a mirror that is set parallel to the layer in distance
d. Coupling between the transmitted field~amplitudeet) and
the reflected field~amplitudeer) is given by the diffractional
paraxial operatorF̂,

er~r' ,t !5F̂et~r' ,t2t![e2 i ~d/k! D'et~r' ,t2t!, ~1!

wherek is the light wave number,D' is the Laplacian over
transverse coordinatesr'5$x,y%, andt is the time delay in
the feedback loop. It is supposed that the mirror reflectivity
is equal to unity and the distanced contains an integer num-
ber of half wavelengths.

As the nonlinear medium we assume a film of two-level
centers with a thickness much less than the wavelength of
incident light, which allows us to neglect light diffraction
and delay inside the layer. The light-matter interaction is
described in this case by the Bloch equations for normalized
polarizationr and population differencew:

r t5~211 id!r1 iew, ~2!

wt52g~w11!1 i ~e* r2r * e!/2, ~3!

whered is the frequency detuning between the incident field
and two-level transition,g5T2 /T1 is the ratio between the
transversal and longitudinal relaxation times, and the expres-
sion for the fielde driving the centers in the film is given by

e~r' ,t !5e01er~r' ,t !2 i2Cr~r' ,t !. ~4!

It is seen that the total field in the film consists of two fields
illuminating the layer from both sides, as well as of the su-
perradiance field proportional to the polarizationr with the
constantC known as the bistability parameter@17#. In addi-
tion, the transmitted and external incident fields are related
as

et~r' ,t !5e02 i2Cr~r' ,t !. ~5!

FIG. 1. ~a! Single feedback mirror optical scheme. See the text.
~b! Steady-state characteristic determined by Eq.~7! atC53.5 and
d522. The interval of instability is marked by the solid line.
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In the limit of very long delay, when relaxation times are
much shorter than the delay timet, the time derivatives in
Eqs.~2! and~3! can be omitted and the system is reduced to
a nonlinear mapping, which takes the form

zn5e01
2C~11 id!~zn1F̂zn21!

~11d2!1uzn1F̂zn21u2
, ~6!

where the transmitted field@zn(r')[et(r' ,t5nt)# is cho-
sen as a dynamical variable. Below we study both the
continuous-time model and the mapping with a comparison
of the results.

The homogeneous steady state is found through solution
of a cubic equation for the field intensity inside the field
uesu2:

ue0u25uesu2F S 11
4C

11d21uesu2
D 21S 4Cd

11d21uesu2
D 2G . ~7!

Depending on the parametersC andd, the system can dem-
onstrate optical bistability@17#. Here we choose parameters
to work in the regime of nascent bistability@Fig. 1~b!#.

Analyzing the stability of the steady state with respect to
perturbations proportional to exp(lt1ik'r'), we find the
neutral stability curves determined by the quasipolynomial
D(l). An expression forD(l) is cumbersome and is pre-
sented elsewhere@19#. We note only that due to diffractional
coupling ~1!, D(l) depends on sinu and cosu, where
u5k'

2d/k. This periodicity onu causes the occurrence of an
infinite number of instability zones distinguished by the
wave numbers of the structure to be developed. In Fig. 2
only the 2p interval is presented. We found two kinds of
zones corresponding to Hopf@V[Im(l)Þ0# and static
(V50) instabilities. Figure 2~a! shows that at a short-time
delay the static instability dominates. With increasing delay
@Figs. 2~b! and 2~c!# the Hopf zones grow and tend to the
size of the static zones, which are invariable at any delay.
Due to the transcendental structure, the quasipolynomial
D(l) has several roots, the number of which grows with
increasingt. A consequence of this can be seen in Fig. 3~c!,
where the secondary Hopf zones are dipped into the primary
ones.

Studying the stability of complex mapping~7! yields a
quadratic equation for the multiplicatorL. The condition of
stability is now uLu,1. Two domains in Fig. 2~d! are in
agreement with the instability zones found in the continuous-
time treatment in the limitt→`. In the domain bounded by
dashed line,L,21 ~Hopf type of instability!, while another
zone withL.1 corresponds to static instability.

Resuming the linear stability analysis, we note that at long
delay, the development and resonance competition of several
modes that are unstable due to both Hopf and static mecha-
nisms should be anticipated, which is investigated below by
means of the numerical simulations~details of the numerical
scheme may be found in Ref.@17#!. The results of the simu-
lations can be classified as follows.

~i! At short delay that corresponds to Fig. 2~a!, the static
instability dominates and with increasing incident light inten-
sity we observed the emergence of static patterns in the form
of positive ~H0! hexagons with their successive transforma-
tion to rolls and further to negative~Hp) hexagons. Such a

transition is a rather conventional phenomenon in the sys-
tems demonstrating a change in sign of the quadratic cou-
pling responsible for hexagon formation@20,21,14,18#.

~ii ! At relatively long delay (t.12), we observed a de-
velopment of Hopf modes and their competition with the
static ones. We used the filtering ink' space to ‘‘cut off’’
the static balloon atu.p and to make the situation clear for
purely Hopf bifurcation. In this case, using different initial

FIG. 2. Neutral stability curves forC53.5,d522, andt55 ~a!,
10 ~b!, and 15~c! and for nonlinear mapping~d!. Solid ~dashed!
curves correspond static~Hopf! instabilities.

FIG. 3. Snapshots of drifting triadic Hopf-static pattern obtained
from the continuous-time model at three successive moments of
time for the parameters of Fig. 2~c! and ue0u2517.8. ~d! illustrates
the instantaneous 2D Fourier spectrum.
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conditions, we obtained structures permitted by the symme-
try rules for the Hopf bifurcation on a plane@8#: traveling
and alternating rolls.

~iii ! We studied the interaction between the Hopf and
static modes, with the result described below.

Starting the simulation of the continuous-time model near
the lower threshold of the instability interval of Fig. 1~b!, we
observed the emergence of a moving pattern with a rhombic
symmetry. In Figs. 3~a!–~c! the snapshots of the light inten-
sity inside the film at three successive moments of time are
shown. The instantaneous 2D spatial Fourier spectrum in
Fig. 3~d! witnesses that two pairs6k1 and6k2, as a result
of composition, give a third pair6ks56k16k2. A com-
parison of the vector moduli with the results of the linear
stability analysis in Fig. 2 shows that6k1 and6k2 belong
to the Hopf instability band, whereas6ks corresponds to the
static structure. Therefore, we call the observed structures
triadic Hopf-static~THS! patterns. One can see from Figs.
3~a!–~c! that the structure performs a drifting motion in the
direction indicated by the bold arrow in Fig. 3~d!. Pattern
dynamics becomes more obvious if we express the light in-
tensity in the film as

I5I bias1
1

2
Seiks•r'1

1

2
H1e

ik1•r'1 iVt

1
1

2
H2e

ik2•r'2 iVt1c.c., ~8!

whereS andH1,2 are complex amplitudes of the static and
Hopf components, respectively. Supposing for the moment
the amplitudes to be real andH15H2[H, we can reduce
Eq. ~8! to

I5I bias1Scos~ks•r'!

12HcosS k11k2
2

•r'D cosS k12k2
2

•r'2Vt D , ~9!

where the last term indicates motion of the pattern with a
velocity v52V/uk12k2u. Obviously, the direction of the
motion is determined by the initial conditions. Note that in
the process of motion the structure reproduced itself with a
period 2p/V, which tends to 2t for long t. With increased
incident light intensityI 0[ue0u2, we observed a transition to
the stripes moving in a direction set by the one of the Hopf
modes. Near the opposite edge of the instability interval the
THS patterns were found again. The only difference from
those presented in Fig. 3 was the inverse contrast.

Simulations with the mapping confirmed results of the
continuous-time treatment. With increasedI 0 we observed an
emergence of positive THS structures with pulsation period
being two iterations. The top and bottom pictures in Fig. 4~a!
show the corresponding established structures at two succes-
sive iterations. With a further increase ofI 0 we saw a tran-
sition to the pulsating stripes@Fig. 4~b!#; the negative THS
structures were found@see Fig. 4~c!# near the upper thresh-
old.

Starting the simulations of the mapping with another set
of initial conditions, we got the THS structures of rhomboid
symmetry~Fig. 5!. Here theH1 andS modes belong to the
instability balloons shown in Fig. 2 within 0,u,p and

p,u,2p intervals, respectively, while theH2 mode lies
within 2p,u,3p. Now, the Hopf modes have different
wave numbers@the correspondingk' diagram is shown in
Fig. 5~d!#. With increasingI 0 we observed the transition
from positive THS structures@Fig. 5~a!# with the pulsation
period being two iterations to the stationary stripes@Fig.
5~b!# produced by theSmode. Figure 5~c! presents the nega-
tive THS patterns near the opposite edge of the instability
interval. Note that similar THS patterns of rhomboidal sym-
metry were also found in simulations of the continuous-time
model.

The whole scenario is quite remniscent of the transition
from positive to negative hexagons, described in our item~i!
and in Refs.@21,20,18#. Similarly to the static hexagons, here

FIG. 4. Positive THS patterns@~a!, top and bottom# obtained
from the mapping~6! at two successive iterations for the parameters
C53.5,d522, andue0u2517.8, stripes atue0u2518.0~b!, negative
THS patterns atue0u2518.05 ~c!, and 2D spatial wave vectors for
the THS pattern~d!.

FIG. 5. Pattern sequence obtained from the mapping at the same
parameters as in Fig. 4 with the only difference being the initial
conditions.

R4550 54LOGVIN, SAMSON, AFANAS’EV, SAMSON, AND LOIKO



the sum of the phases of the triad
arg(S)1arg(H1)1arg(H2) is a main characteristic. For the
structures near the lower and the upper edges of the instabil-
ity interval in Fig. 1~b!, this sum is equal to 0 andp, respec-
tively. Therefore, we refer to the scenario described as a
transition from positive to negative THS patterns through
stripes.

An explanation of the scenarios described above may be
given in terms of amplitudes equations that can be derived in
the vicinity of the lower ~upper! static mode excitation
threshold. The threshold, for the Hopf mode, must be close
to the static one in the case of a sufficient delay. Then, in-
troducing the delay operatorD̂5exp@2t (d/dt)# and suppos-
ing t}«21, where« is, in fact, the distance from the thresh-
old, which sets the scale for the standard multiple-scale
expansion, the equations for three THS amplitudes are ob-
tained. In a normalized form for the case ofd50 they read
~cf. @7#!

d

dt
S5«S1sH1H22@ uSu212g~ uH1u21uH2u2!#S,

d

dt
H1,25~«2D1 iV8!H1,21~s1 is8!H2,1* S

2@ uH1,2u212g~ uSu21uH2,1u2!#H1,2, ~10!

whereD}V2 is the gap between thresholds for the static and
Hopf modes,s51 at the lower threshold, ands521 at the
upper one. The imaginary coefficientsV8,s8}V may be
skipped because they only renormalize the Hopf frequency
value. It is easy to see that in a mapping limitt→`, or
V→0, the Ginzburg-Landau equations~10! become identi-
cal to the amplitude equations for static hexagons@22#.
Analogous to the case of hexagons, positive THS patterns
occur ats51 and negative ones ats521.

In conclusion, we described a class of 2D dissipative
structures that arise as a result of development and resonant
interaction of two Hopf and single static modes. Although
the THS patterns are shown to emerge in the nonlinear opti-
cal system with delay, they should be inherent in other 2D
pattern-forming systems permitting a resonance interaction
of the Hopf and static modes.
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